Space: Environment
The interplanetary dust cloud illuminated and visible as zodiacal light, with its parts the false dawn,[19] gegenschein and the rest of its band, which is visually crossed by the Milky Way
Outer space is the closest known approximation to a perfect vacuum. It has effectively no friction, allowing stars, planets, and moons to move freely along their ideal orbits, following the initial formation stage. The deep vacuum of intergalactic space is not devoid of matter, as it contains a few hydrogen atoms per cubic meter.[20] By comparison, the air humans breathe contains about 1025 molecules per cubic meter.[21][22] The low density of matter in outer space means that electromagnetic radiation can travel great distances without being scattered: the mean free path of a photon in intergalactic space is about 1023 km, or 10 billion light years.[23] In spite of this, extinction, which is the absorption and scattering of photons by dust and gas, is an important factor in galactic and intergalactic astronomy.[24]
Stars, planets, and moons retain their atmospheres by gravitational attraction. Atmospheres have no clearly delineated upper boundary: the density of atmospheric gas gradually decreases with distance from the object until it becomes indistinguishable from outer space.[25] The Earth's atmospheric pressure drops to about 0.032 Pa at 100 kilometres (62 miles) of altitude,[26] compared to 100,000 Pa for the International Union of Pure and Applied Chemistry (IUPAC) definition of standard pressure. Above this altitude, isotropic gas pressure rapidly becomes insignificant when compared to radiation pressure from the Sun and the dynamic pressure of the solar wind. The thermosphere in this range has large gradients of pressure, temperature and composition, and varies greatly due to space weather.[27]
The temperature of outer space is measured in terms of the kinetic activity of the gas,[28] as it is on Earth. The radiation of outer space has a different temperature than the kinetic temperature of the gas, meaning that the gas and radiation are not in thermodynamic equilibrium.[29][30] All of the observable universe is filled with photons that were created during the Big Bang, which is known as the cosmic microwave background radiation (CMB). (There is quite likely a correspondingly large number of neutrinos called the cosmic neutrino background.[31]) The current black body temperature of the background radiation is about 3 K (−270 °C; −454 °F).[32] The gas temperatures in outer space can vary widely. For example, the temperature in the Boomerang Nebula is 1 K,[33] while the solar corona reaches temperatures over 1.2–2.6 million K.[34]
Magnetic fields have been detected in the space around just about every class of celestial object. Star formation in spiral galaxies can generate small-scale dynamos, creating turbulent magnetic field strengths of around 5–10 μG. The Davis–Greenstein effect causes elongated dust grains to align themselves with a galaxy's magnetic field, resulting in weak optical polarization. This has been used to show ordered magnetic fields exist in several nearby galaxies. Magneto-hydrodynamic processes in active elliptical galaxies produce their characteristic jets and radio lobes. Non-thermal radio sources have been detected even among the most distant, high-z sources, indicating the presence of magnetic fields.[35]
Outside a protective atmosphere and magnetic field, there are few obstacles to the passage through space of energetic subatomic particles known as cosmic rays. These particles have energies ranging from about 106 eV up to an extreme 1020 eV of ultra-high-energy cosmic rays.[36] The peak flux of cosmic rays occurs at energies of about 109 eV, with approximately 87% protons, 12% helium nuclei and 1% heavier nuclei. In the high energy range, the flux of electrons is only about 1% of that of protons.[37] Cosmic rays can damage electronic components and pose a health threat to space travelers.[38] According to astronauts, like Don Pettit, space has a burned/metallic odor that clings to their suits and equipment, similar to the scent of an arc welding torch.[39][40]