Space:Effect on biology and human bodies
Main articles: Effect of spaceflight on the human body, Bioastronautics, Uncontrolled decompression, and Weightlessness
See also: Astrobiology, Astrobotany, Plants in space, and Animals in space
The lower half shows a blue planet with patchy white clouds. The upper half has a man in a white spacesuit and maneuvering unit against a black background.
Because of the hazards of a vacuum, astronauts must wear a pressurized space suit while off-Earth and outside their spacecraft.
Despite the harsh environment, several life forms have been found that can withstand extreme space conditions for extended periods. Species of lichen carried on the ESA BIOPAN facility survived exposure for ten days in 2007.[41] Seeds of Arabidopsis thaliana and Nicotiana tabacum germinated after being exposed to space for 1.5 years.[42] A strain of Bacillus subtilis has survived 559 days when exposed to low Earth orbit or a simulated martian environment.[43] The lithopanspermia hypothesis suggests that rocks ejected into outer space from life-harboring planets may successfully transport life forms to another habitable world. A conjecture is that just such a scenario occurred early in the history of the Solar System, with potentially microorganism-bearing rocks being exchanged between Venus, Earth, and Mars.[44]
Even at relatively low altitudes in the Earth's atmosphere, conditions are hostile to the human body. The altitude where atmospheric pressure matches the vapor pressure of water at the temperature of the human body is called the Armstrong line, named after American physician Harry G. Armstrong. It is located at an altitude of around 19.14 km (11.89 mi). At or above the Armstrong line, fluids in the throat and lungs boil away. More specifically, exposed bodily liquids such as saliva, tears, and liquids in the lungs boil away. Hence, at this altitude, human survival requires a pressure suit, or a pressurized capsule.[45]
Out in space, sudden exposure of an unprotected human to very low pressure, such as during a rapid decompression, can cause pulmonary barotrauma—a rupture of the lungs, due to the large pressure differential between inside and outside the chest.[46] Even if the subject's airway is fully open, the flow of air through the windpipe may be too slow to prevent the rupture.[47] Rapid decompression can rupture eardrums and sinuses, bruising and blood seep can occur in soft tissues, and shock can cause an increase in oxygen consumption that leads to hypoxia.[48]
As a consequence of rapid decompression, oxygen dissolved in the blood empties into the lungs to try to equalize the partial pressure gradient. Once the deoxygenated blood arrives at the brain, humans lose consciousness after a few seconds and die of hypoxia within minutes.[49] Blood and other body fluids boil when the pressure drops below 6.3 kPa, and this condition is called ebullism.[50] The steam may bloat the body to twice its normal size and slow circulation, but tissues are elastic and porous enough to prevent rupture. Ebullism is slowed by the pressure containment of blood vessels, so some blood remains liquid.[51][52] Swelling and ebullism can be reduced by containment in a pressure suit. The Crew Altitude Protection Suit (CAPS), a fitted elastic garment designed in the 1960s for astronauts, prevents ebullism at pressures as low as 2 kPa.[53] Supplemental oxygen is needed at 8 km (5 mi) to provide enough oxygen for breathing and to prevent water loss, while above 20 km (12 mi) pressure suits are essential to prevent ebullism.[54] Most space suits use around 30–39 kPa of pure oxygen, about the same as on the Earth's surface. This pressure is high enough to prevent ebullism, but evaporation of nitrogen dissolved in the blood could still cause decompression sickness and gas embolisms if not managed.[55]
Humans evolved for life in Earth gravity, and exposure to weightlessness has been shown to have deleterious effects on human health. Initially, more than 50% of astronauts experience space motion sickness. This can cause nausea and vomiting, vertigo, headaches, lethargy, and overall malaise. The duration of space sickness varies, but it typically lasts for 1–3 days, after which the body adjusts to the new environment. Longer-term exposure to weightlessness results in muscle atrophy and deterioration of the skeleton, or spaceflight osteopenia. These effects can be minimized through a regimen of exercise.[56] Other effects include fluid redistribution, slowing of the cardiovascular system, decreased production of red blood cells, balance disorders, and a weakening of the immune system. Lesser symptoms include loss of body mass, nasal congestion, sleep disturbance, and puffiness of the face.[57]
During long-duration space travel, radiation can pose an acute health hazard. Exposure to high-energy, ionizing cosmic rays can result in fatigue, nausea, vomiting, as well as damage to the immune system and changes to the white blood cell count. Over longer durations, symptoms include an increased risk of cancer, plus damage to the eyes, nervous system, lungs and the gastrointestinal tract.[58] On a round-trip Mars mission lasting three years, a large fraction of the cells in an astronaut's body would be traversed and potentially damaged by high energy nuclei.[59] The energy of such particles is significantly diminished by the shielding provided by the walls of a spacecraft and can be further diminished by water containers and other barriers. The impact of the cosmic rays upon the shielding produces additional radiation that can affect the crew. Further research is needed to assess the radiation hazards and determine suitable countermeasures.[60]